Two-sided Localization of Bimodules

نویسنده

  • E. ORTEGA
چکیده

We extend to bimodules Schelter’s localization of a ring with respect to Gabriel filters of left and right ideals. Our two-sided localization of bimodules provides an endofunctor on a convenient bicategory of rings with filters of ideals. This is used to study the Picard group of a ring relative to a filter of ideals.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Gröbner bases and syzygies on bimodules over PBW algebras

A new method for the computation of two-sided Gröbner bases of ideals and bimodules shifting the problem to the enveloping algebra is proposed. This alternative method appears to be more efficient than the one in [Kandri-Rody, A., Weispfenning, V., 1990. Non-commutative Gröbner bases in algebras of solvable type. J. Symbolic Comput. 9, 1–26] since it calls the left Buchberger algorithm once. We...

متن کامل

Gröbner Bases and Syzygies on Bimodules

A new more efficient method for the computation of two-sided Gröbner bases of ideals and bimodules shifting the problem to the enveloping algebra is proposed. Arising from the ideas this method involves, we introduce the notion of two-sided syzygy, which reveals to be useful in the computation of the intersection of bimod-ules. Further applications are left for a sequel.

متن کامل

Hom-tensor Relations for Two-sided Hopf Modules over Quasi-hopf Algebras

For a Hopf algebra H over a commutative ring k, the category MH of right Hopf modules is equivalent to the category Mk of k-modules, that is, the comparison functor −⊗k H : Mk → MH is an equivalence (Fundamental theorem of Hopf modules). This was proved by Larson and Sweedler via the notion of coinvariants McoH for any M ∈ MH . The coinvariants functor (−) coH : MH → Mk is right adjoint to the ...

متن کامل

C-pseudo-multiplicative unitaries and Hopf C-bimodules

We introduce C∗-pseudo-multiplicative unitaries and concrete Hopf C∗-bimodules for the study of quantum groupoids in the setting of C∗-algebras. These unitaries and Hopf C∗-bimodules generalize multiplicative unitaries and Hopf C∗-algebras and are analogues of the pseudo-multiplicative unitaries and Hopf–von Neumann-bimodules studied by Enock, Lesieur and Vallin. To each C∗-pseudo-multiplicativ...

متن کامل

Two-sided (two-cosided) Hopf modules and Doi-Hopf modules for quasi-Hopf algebras

Let H be a finite dimensional quasi-Hopf algebra over a field k and A a right H-comodule algebra in the sense of [12]. We first show that on the k-vector space A⊗H∗ we can define an algebra structure, denoted by A # H∗, in the monoidal category of left H-modules (i.e. A # H∗ is an Hmodule algebra in the sense of [2]). Then we will prove that the category of two-sided (A,H)bimodules HM H A is is...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008